Stable membrane orientations of small dual-topology membrane proteins.
نویسندگان
چکیده
The topologies of α-helical membrane proteins are generally thought to be determined during their cotranslational insertion into the membrane. It is typically assumed that membrane topologies remain static after this process has ended. Recent findings, however, question this static view by suggesting that some parts of, or even the whole protein, can reorient in the membrane on a biologically relevant time scale. Here, we focus on antiparallel homo- or heterodimeric small multidrug resistance proteins and examine whether the individual monomers can undergo reversible topological inversion (flip flop) in the membrane until they are trapped in a fixed orientation by dimerization. By perturbing dimerization using various means, we show that the membrane orientation of a monomer is unaffected by the presence or absence of its dimerization partner. Thus, membrane-inserted monomers attain their final orientations independently of dimerization, suggesting that wholesale topological inversion is an unlikely event in vivo.
منابع مشابه
Npgrj_nsmb_1057 112..116
Integral membrane proteins are generally believed to have unique membrane topologies. However, it has been suggested that dual-topology proteins that adopt a mixture of two opposite orientations in the membrane may exist. Here we show that the membrane orientations of five dual-topology candidates identified in Escherichia coli are highly sensitive to changes in the distribution of positively c...
متن کاملAntiparallel dimers of the small multidrug resistance protein EmrE are more stable than parallel dimers.
The bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are abl...
متن کاملDual-topology insertion of a dual-topology membrane protein
Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains...
متن کاملIn Silico and in Vitroinvestigations on cry4aand cry11atoxins of Bacillus thuringiensis var Israelensis
In the present study we attempted to correlate the structure and function of the cry11a (72 kDa) and cry4a (135 kDa) proteins of Bacillus thuringiensis var israelensis. Homology modeling and secondary structure predictions were done to locate most probable regions for finding helices or strands in these proteins. The JPRED (JPRED consensus secondary structure prediction server) secondary struct...
متن کاملThe Extractability of Inner-Membrane Proteins from Salmonella typhimurium Intact Cells, Spheroplasts and Inner-Membrane Fragments by Non-Denaturing Detergents
The effect of Triton X-100, Na cholate and Tween 80 on the solubilization of integral membrane proteins in intact cells, spheroplasts and inner-membrane fragments of Salmonella typhimurium was studied. The detergents were used in various concentrations (1.6 to 64 mM) and cytochromes b and d were used as marker to monitor the solubilization of membrane-bound proteins. Results showed that no inne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 30 شماره
صفحات -
تاریخ انتشار 2017